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We prove that for the one-dimensional motion of a classical particle in a potential of the form
V(x)=ax?+bx?" with a,b>0 andn equal to a positive integer greater than or equal to 2, the thermally
averaged velocity autocorrelation functi@it) behaves as a sinusoidal function of time divided ¥y~ as
t goes to infinity. This form of the correlation function survives some alterationgx), which we discuss.
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PACS numbsgfs): 02.50—r, 67.40.Fd, 65.9:i, 63.70+h

Investigation of the relaxation properties of a classicalare quite generally valid. To be precise, we prove that
particle in a one-dimensional anharmonic potential is a prob€(t; 8) asymptotically goes aB(t)/t¥"~1) wheren is any
lem of considerable general interest because of its connectiqsositive integer greater than or equal to 2 ang) is a
to a variety of problems in condensed matter physics, e.gsinusoidal function of time with the periodicity the same as
thermally activated dynamics in glass transitions or thethat associated with the motion when the energy goes to
Krumhansl-Schrieffer model of structural phase transitionzero. This form of the correlation function as a product of a
[1-6]. Recently, Sen, Sinkovits, and Chakravarti studiedsinysoidal function and an algebraic function survives even
such dynamics for potentials of the for(x)=ax”+bx™ it 3 js negative or linear and cubic terms are added to the
with a,b>0 andn=2, 3, 4, and 57,8]. Forn=2, they  ,ntential. Thus we have provided analytical support to all the
showed (both numerlpally and analyncauythgt the ther- b merical results of Ref8] and have generalized the results
mally averaged velocity autocorrelation functi@xt; 8) de- considerably.
cays asympiofically as tliapart from an overall periodic To derive these results, first we take the case when the
prefactor. HereB=1/kgT whereT is the temperature. For otential is of the forrrV(x),=(1/2)x2+(1/2n)x2”, wheren

n=3, 4, and 5 their numerical work suggests that the asymp.F—) a positive integer greater than or equal to 2. The definition

totic decay is again algebraic and with an exponent equal t& ) . .
1/(n—1). In this work we prove analytically that their results of the thermally averaged velocity autocorrelation function is

C(t;ﬁ):U: exq—ﬁE)d(E)h(t;E)dE)/ U: exp( — BE)d(E)dE], (1)

whered(E) is the density of states arf{t;E) is the auto- the time axis is taken to coincide with a moment when the
correlation function at energf. Since the motion with a particle is at one of the two turning points of motion. Only
particular energ\E is bounded and periodic with frequency odd multiples of the fundamental frequency appear in the
w(E), h(t;E) is also periodic with the same frequency. The series sinc&/(—x)=V(x). Thus substitutind3) in (2),
definition of h(t;E) is

w w h(t;E)= 2 2(E) |.

Sirjce the velocity is a periodic function of time, it can be The denominator of the right-hand side of E4) is nothing
written in the form but the action](E) of the orbit defined by(E)=¢ p(x) dx
with a mass of 1. So Ed4) reduces to

o0

v(t)= 2 ay(E)sin(2p+1)w(E)t]. (3 -
p=0 h(t;E)=<E a(E)cog (2p+ 1)W(E)t]) / J(E).
The fact that there are no cosine terms in this expansion is ° (5)

simply a consequence of the choice of phase. The origin of
Since our basic goal is to study the time dependence of the
correlation function, we are not concerned with the denomi-
*Electronic address: sarkar@jnuniv.ernet.in nator in Eq.(1) and shall study only the function
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lo(t)~f(0)exfit #(0)+im/2m][ml/t| 6™ (0)[]¥m

G(t;ﬁ)=fw exp— BE)A(E)N(GE)E ()
0 X T'(1/m)/m, 9

Zf dE exp(—BE) wherem=(n—1) and #™(0) is themth derivative of ¢

0 evaluated aE=0. SinceG(t; B) is the real part of o(t), it

* immediately follows that, in general
Xd(E) 2, [a(E)I(E)]

Go(t; B)~cogw(0)t+ m/2(n—1)]/t¥"=Y (10
x cog (2p+ 1)W(E)t]. 7)

Let us take thesth term [G,(t; 8)] of this series and find out This is the basic result we wanted to prove. For valuep of

its asymptotic behavioG y(t; 8) is the real part of ,, where  higher than zeroa () involves powers of higher than
one. The actual powers will depend on the specific choice of

(” ) potential. Thusf(E) goes a€E'® in the E—0 limit. Herel
lp= fo dE exp(— BE)d(E)[ay(E)/I(E)] is a strictly increasing function gb. It is simple to sed9]
that in such a situatioh, will have additional powers df in

xXexgit(2p+1)w(E)]. (8) the denominator and thus decay faster tharHigher values

] ] of p will thus contribute progressively faster decaying terms

I, has the formf 2f(E)explit $(E)]dE with both f and ¢ 16 the correlation function.
real,a=0 andb=« and we are mtereste(_j in the»oo limit. The statement that(E) has an —1)th order stationary
We apply the well-known method of stationary pha#sto  point atE=0 follows from results available in the work of
accomphsh this goal. The crucial Qlement of our analysis iscodaccioni and Cabof10] where the dependence of time
to note, without any proof for the time being, tha(E) has  period on energy is shown to be a generalized hypergeomet-
a (n—1)th order stationary point é€=a=0. This means jc function of E"~ ). This implies that in the limiE—0,
that all the derivatives ofv(E) up to and including ther( w(E) has the form ofv(E) =w(0)+constanE™ . In the
—2)th order vanish aE=0 but the 0 —1)th order deriva-  fgllowing we will give an alternative proof of this result. The
tive is nonvanishing. . ) proof depends on the fact thatd(E) =d J(E)/dE. Thus we

Let us first take thgg=0 term, which will turn out to be need to show that(E) = a;E + a,E"+ (higher order terms

the term decaying the slowest and hence give the leadingow, since the potential is symmetric arouxe 0,
asymptotic behavior. AE goes to zerod(E) approaches a

nonzero constant. To see this note that the number of states

[N(E)] with energy up tcE is proportional to the area in the J(E):4JU(E) JE— (2= (1) dx, (1)
X-p plane enclosed by the contour of eneigyAs E goes to 0 '

zero, the motion becomes essentially harmonic and this area

is proportional toE. Similarly, a3 is also linear inE so that

2 .
ag/J(E) approaches a nonzero constant. This statement . . . . )
agailg e)1 cgﬁsequence of the observation that inEhe0 gral without the anharmonic terrfthe right turning point

limit, the motion is harmonic to leading order. ThgE) €N PeindJo(E) = v2E]is a,E. Thus we need to show that

imi i the leadi t in  83=[°® E—(1/2)x%d
goes to a nonzero limit a8—0. Ast—, the leading be- the leading term in Jo (172)x“dx
havior of I is then given by[9] — [YB JE—(1/2)x?— (1/2n)x®dx is of orderE™:

i\é/hereU(E) is the right turning point. In Eq(11) the inte-

U(E) Uo(E)
5J=J [\/E—(1/2)x2—\/E—(1/2)x2—(1/2n)x2“]dx+J O VE=(12X2dx=T4(E) + TH(E). (12)
0 U(E)
U(E) can be determined easily through perturbative techni§@land is given by

U(E)=V2E—(1/2n)(2E) "~ V24 {[2n—(1/2)1/4n?}(2E)2"~ (32 4 ... | (13)

Using this it is straightforward to see tHa§(E)~E®" V2. is independent oE. ThusT,(E) is bounded above and be-

To calculate T,(E) notice that {VE—(1/2)x2 IO\EV Zn?y )/K arEd/ ()TKa resgectlvelﬁ, \rllvhere KT) ) B"fE)h
_Je_ 2_ 2N _ (42N [E_(1/9\2 X (x2"/2n)/JE— (1/2)x?dx and is easily shown to be of the

VE- (L2p - (120X} =[ (x /Zn?/ E (1/2)x23f(x), orderE". SinceT,(E) is bounded both above and below by
where f(x)=[1-V1-y(x)]/y(x) with y(x)=(x"72n)/" quantities of ordeE" in the limit E—0 it must be strictly of
[E—(1/2)x?]. The range ok [0,U(E)] maps onto the range order E" in this limit and thus dominate3, (sincen is
[0,1] for y and thusf(x) is bounded above by 1 and below greater than or equal t0).2Thus 6J is of order E". This
by o with 1>0>0. The important point here is that = completes the proof.
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In the potentialV(x)=ax?+bx?", which we have been object of primary interest to us is the leading correction to
considering until now, botla andb were taken to be posi- the constant term in the expression fofE). Again, we use
tive. We can generalize our results to the situation whaén  the result from Ref[10] that when the first correction to the
negative and when, in addition, linear and cubic terms ar¢armonic potential is cubic, the leading correctiomi(E) is
added to the potential. <0 the potential assumes a double |inear inE. Thus again the algebraic part©f{t) is 14. w(0)
well shape whereas addition of linear and cubic terms makegas to be computed keeping in mind that the potential mini-
the potential asymmetric. In these situations the global pomum has shifted away from= 0. The analytical results pre-

tential minimum(or minima shifts away fromx=0. When  senteq in this paper completely explain all the numerical
the potential is expanded in terms of displacement from such.gits described in Refg].

a minimum, the first term is quadratic with positive coeffi-
cient and this is followed by a cubic term. The degree of the The author acknowledges valuable assistance from R. Ra-
polynomial of course remains unaltered. Remember that thmmaswamy.
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