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We prove that for the one-dimensional motion of a classical particle in a potential of the form
V(x)5ax21bx2n with a,b.0 andn equal to a positive integer greater than or equal to 2, the thermally
averaged velocity autocorrelation functionC(t) behaves as a sinusoidal function of time divided byt1/(n21) as
t goes to infinity. This form of the correlation function survives some alterations inV(x), which we discuss.
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PACS number~s!: 02.50.2r, 67.40.Fd, 65.90.1i, 63.70.1h

Investigation of the relaxation properties of a classical
particle in a one-dimensional anharmonic potential is a prob-
lem of considerable general interest because of its connection
to a variety of problems in condensed matter physics, e.g.,
thermally activated dynamics in glass transitions or the
Krumhansl-Schrieffer model of structural phase transition
@1–6#. Recently, Sen, Sinkovits, and Chakravarti studied
such dynamics for potentials of the formV(x)5ax21bx2n

with a,b.0 and n52, 3, 4, and 5@7,8#. For n52, they
showed ~both numerically and analytically! that the ther-
mally averaged velocity autocorrelation functionC(t;b) de-
cays asymptotically as 1/t apart from an overall periodic
prefactor. Hereb51/kBT whereT is the temperature. For
n53, 4, and 5 their numerical work suggests that the asymp-
totic decay is again algebraic and with an exponent equal to
1/(n21). In this work we prove analytically that their results

are quite generally valid. To be precise, we prove that
C(t;b) asymptotically goes asP(t)/t1/(n21) wheren is any
positive integer greater than or equal to 2 andP(t) is a
sinusoidal function of time with the periodicity the same as
that associated with the motion when the energy goes to
zero. This form of the correlation function as a product of a
sinusoidal function and an algebraic function survives even
if a is negative or linear and cubic terms are added to the
potential. Thus we have provided analytical support to all the
numerical results of Ref.@8# and have generalized the results
considerably.

To derive these results, first we take the case when the
potential is of the formV(x)5(1/2)x21(1/2n)x2n, wheren
is a positive integer greater than or equal to 2. The definition
of the thermally averaged velocity autocorrelation function is

C~ t;b!5S E
0

`

exp~2bE!d~E!h~ t;E!dED Y S E
0

`

exp~2bE!d~E!dED , ~1!

whered(E) is the density of states andh(t;E) is the auto-
correlation function at energyE. Since the motion with a
particular energyE is bounded and periodic with frequency
w(E), h(t;E) is also periodic with the same frequency. The
definition ofh(t;E) is

h~ t;E!5S E
2`

`

v~ t8!v~ t1t8!dt8D Y S E
2`

`

v~ t8!2dt8D . ~2!

Since the velocity is a periodic function of time, it can be
written in the form

v~ t !5 (
p50

`

ap~E!sin@~2p11!w~E!t#. ~3!

The fact that there are no cosine terms in this expansion is
simply a consequence of the choice of phase. The origin of

the time axis is taken to coincide with a moment when the
particle is at one of the two turning points of motion. Only
odd multiples of the fundamental frequency appear in the
series sinceV(2x)5V(x). Thus substituting~3! in ~2!,

h~ t;E!5S (
0

`

ap
2~E!cos@~2p11!w~E!t# DY S (

0

`

ap
2~E!D .

~4!

The denominator of the right-hand side of Eq.~4! is nothing
but the actionJ(E) of the orbit defined byJ(E)5r p(x) dx
with a mass of 1. So Eq.~4! reduces to

h~ t;E!5S (
0

`

ap
2~E!cos@~2p11!w~E!t# D Y J~E!.

~5!

Since our basic goal is to study the time dependence of the
correlation function, we are not concerned with the denomi-
nator in Eq.~1! and shall study only the function*Electronic address: sarkar@jnuniv.ernet.in
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G~ t;b!5E
0

`

exp~2bE!d~E!h~ t;E!dE ~6!

5E
0

`

dE exp~2bE!

3d~E! (
p50

`

@ap
2~E!/J~E!#

3cos@~2p11!w~E!t#. ~7!

Let us take thepth term [Gp(t;b)] of this series and find out
its asymptotic behavior.Gp(t;b) is the real part ofI p , where

I p5E
0

`

dE exp~2bE!d~E!@ap
2~E!/J~E!#

3exp@ i t ~2p11!w~E!#. ~8!

I p has the form* a
bf (E)exp[i tf(E)]dE with both f andf

real,a50 andb5` and we are interested in thet→` limit.
We apply the well-known method of stationary phases@9# to
accomplish this goal. The crucial element of our analysis is
to note, without any proof for the time being, thatf(E) has
a (n21)th order stationary point atE5a50. This means
that all the derivatives ofw(E) up to and including the (n
22)th order vanish atE50 but the (n21)th order deriva-
tive is nonvanishing.

Let us first take thep50 term, which will turn out to be
the term decaying the slowest and hence give the leading
asymptotic behavior. AsE goes to zero,d(E) approaches a
nonzero constant. To see this note that the number of states
[N(E)] with energy up toE is proportional to the area in the
x-p plane enclosed by the contour of energyE. AsE goes to
zero, the motion becomes essentially harmonic and this area
is proportional toE. Similarly, a 0

2 is also linear inE so that
a 0
2/J(E) approaches a nonzero constant. This statement is

again a consequence of the observation that in theE→0
limit, the motion is harmonic to leading order. Thusf (E)
goes to a nonzero limit asE→0. As t→`, the leading be-
havior of I 0 is then given by@9#

I 0~ t !; f ~0!exp@ i tf~0!1 ip/2m#@m!/ tuf~m!~0!u#1/m

3G~1/m!/m, ~9!

wherem5(n21) andf (m)(0) is themth derivative off
evaluated atE50. SinceG0(t;b) is the real part ofI 0(t), it
immediately follows that, in general

G0~ t;b!;cos@w~0!t1p/2~n21!#/t1/~n21!. ~10!

This is the basic result we wanted to prove. For values ofp
higher than zero,a p

2(E) involves powers ofE higher than
one. The actual powers will depend on the specific choice of
potential. Thusf (E) goes asEl (p) in theE→0 limit. Here l
is a strictly increasing function ofp. It is simple to see@9#
that in such a situationI p will have additional powers oft in
the denominator and thus decay faster thanI 0 . Higher values
of p will thus contribute progressively faster decaying terms
to the correlation function.

The statement thatw(E) has an (n21)th order stationary
point atE50 follows from results available in the work of
Codaccioni and Caboz@10# where the dependence of time
period on energy is shown to be a generalized hypergeomet-
ric function ofE(n21). This implies that in the limitE→0,
w(E) has the form ofw(E)5w(0)1constantE(n21). In the
following we will give an alternative proof of this result. The
proof depends on the fact that 1/w(E)5dJ(E)/dE. Thus we
need to show thatJ(E)5a1E1a2E

n1 ~higher order terms!.
Now, since the potential is symmetric aroundx50,

J~E!54E
0

U~E!
A2$E2~1/2!x22~1/2n!x2n%dx, ~11!

whereU(E) is the right turning point. In Eq.~11! the inte-
gral without the anharmonic term@the right turning point
then beingU0(E)5A2E# is a1E. Thus we need to show that
the leading term in dJ5*0

U0(E)AE2(1/2)x2dx
2*0

U(E)AE2(1/2)x22(1/2n)x2ndx is of orderEn:

dJ5E
0

U~E!

@AE2~1/2!x22AE2~1/2!x22~1/2n!x2n#dx1E
U~E!

U0~E!
AE2~1/2!x2dx5T1~E!1T2~E!. ~12!

U(E) can be determined easily through perturbative techniques@9# and is given by

U~E!5A2E2~1/2n!~2E!~2n21!/21$@2n2~1/2!#/4n2%~2E!2n2~3/2!1••• . ~13!

Using this it is straightforward to see thatT2(E);E(3n21)/2.

To calculate T1(E) notice that $AE2(1/2)x2

2AE2(1/2)x22(1/2n)x2n%5@(x2n/2n)/AE2(1/2)x2# f (x),

where f (x)5@12A12y(x)#/y(x) with y(x)5(x2n/2n)/

@E2(1/2)x2#. The range ofx [0,U(E)] maps onto the range
@0,1# for y and thusf (x) is bounded above by 1 and below
by s with 1.s.0. The important point here is thats

is independent ofE. ThusT1(E) is bounded above and be-
low by K and sK, respectively, whereK5*0

U(E)

3(x2n/2n)/AE2(1/2)x2dx and is easily shown to be of the
orderEn. SinceT1(E) is bounded both above and below by
quantities of orderEn in the limit E→0 it must be strictly of
order En in this limit and thus dominatesT2 ~since n is
greater than or equal to 2!. Thus dJ is of orderEn. This
completes the proof.
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In the potentialV(x)5ax21bx2n, which we have been
considering until now, botha andb were taken to be posi-
tive. We can generalize our results to the situation whena is
negative and when, in addition, linear and cubic terms are
added to the potential. Ifa,0 the potential assumes a double
well shape whereas addition of linear and cubic terms makes
the potential asymmetric. In these situations the global po-
tential minimum~or minima! shifts away fromx50. When
the potential is expanded in terms of displacement from such
a minimum, the first term is quadratic with positive coeffi-
cient and this is followed by a cubic term. The degree of the
polynomial of course remains unaltered. Remember that the

object of primary interest to us is the leading correction to
the constant term in the expression forw(E). Again, we use
the result from Ref.@10# that when the first correction to the
harmonic potential is cubic, the leading correction inw(E) is
linear inE. Thus again the algebraic part ofC(t) is 1/t. w(0)
has to be computed keeping in mind that the potential mini-
mum has shifted away fromx50. The analytical results pre-
sented in this paper completely explain all the numerical
results described in Ref.@8#.
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